
Python Projects

1

Python Projects Solved by Michael Zolotarenko

 The Great Robot Race ✎ Specialized Collections

 from the Codecademy Intermediate Python 3 course (view Certificate of completion)

Task (view at codecademy.com)

The brushless motors are roaring, and the race is about to begin! In this project, we will be using some of
the advanced containers in Python to command, track, and score simple robots which are trying to traverse
different mazes. Your job will be to fill in the missing code from the robot_race.py file. A lot of
background code has been provided in the robot_race_functions.py file which we will be using, but the
primary focus of this project is to use advanced collections in a meaningful way.

Reviewing the Code

1. Let’s start by taking a look at what the mazes files look like!

This one is maze_data_1.csv:

#,#,#,#,#,#,#,#,#,#
#,_,_,_,#,_,_,_,$,#
#,_,A,_,_,_,#,_,_,#
#,B,_,_,#,_,#,_,_,#
#,_,C,_,#,_,_,_,_,#
#,#,#,#,#,#,#,#,#,#

The mazes are csv files which contain different characters that represent different objects in the robot
race. Any letter represents a robot, the # character represents a wall which the robots can collide with,
and the $ is the goal which the robots are racing towards. Robots can traverse into any empty space
(shown by an _) and they can even occupy the same space as another robot (shown as a +). At any point
during this project, feel free to create your own csv maze and use it in the code instead of the example
ones.

2. Now take a look at the robot_race.py file. After importing the required modules and classes, there are
some values to take note of at the top of the file. The maze_file_name can be changed to any csv file
which follows the maze structure (as defined earlier). The seconds_between_turns value will determine
how much time passes between updating the visualized maze in the console (which we will be coding
during the project). Finally, the max_turns value determines how many turns the robots have before the
race ends. The race will end if the max turns are reached or if all of the robots reach the goal.

The robots will be scored based on the amount of moves they make plus the number of collisions they have
with the walls. The robot with the lowest score wins.

3. Throughout this project, run the code in the terminal by using the command: python3 robot_race.py

Commanding the Bots

4. To begin, we are going to use the provided compute_robot_logic function from
robot_race_functions.py to calculate every move for every robot which has not finished the maze yet. This
function accepts the walls, goal, and bot variables in that order and returns a tuple containing the robot
name, selected action, and if the robot has collided.

5. The first while loop iterates until the race is over. Inside of this, loop through every bot which has not
finished the race yet (bot.has_finished == False). Pass the walls, goal, and bot to the
compute_robot_logic function in that order. This will return the robot’s decision given its position in the
map in the form of a tuple containing (robot_name, action, has_collided). Append the robot’s decision to
the robot_moves deque.

https://mikezolo.github.io/
https://www.codecademy.com/enrolled/courses/learn-intermediate-python-3
https://www.codecademy.com/profiles/mikezolo/certificates/18580789eaba28f09e116f4fc2acec44
https://www.codecademy.com/courses/learn-intermediate-python-3/projects/the-great-robot-race-python-project

Python Projects

2

Scoring the Bots

6. Now that all robots’ moves have been calculated, we can use that data and the Counter container to
find the exact number of moves that each robot makes using one line of code! This should count every
name (the first element in the move tuple) for every move in the deque.

7. We can use the Counter container to count how many collisions each robot made as well. To do this,
make sure to only count the robot name when has_collided is True in each move tuple within the
robot_moves deque.

8. Since we have the move and collision count for each robot, we can now calculate the final scores for
each bot. In order to make it easier to read, let’s create a namedtuple to keep track of our bot score
data. Create a namedtuple subclass called BotScoreData which contains the field names: 'name',
'num_moves', 'num_collisions', and 'score'.

9. Loop through each of the robots in bots, and for every robot, create a new BotScoreData object
containing all the correct data. Append this new object to the bot_scores list. Remember that the score for
each robot is found by adding the number of moves and the number of collisions. Try calling the
print_results function using the bot_scores and see what’s printed to the console. You should see the final
results of the race in the terminal, but now let’s watch them actively move through the maze!

Displaying the Live Race

10. To watch the robots travel through the maze, let’s start by creating a dict which allow us to easily
access each robot object by its name when looking at the different moves in the deque. Loop through
every robot in bots and add it to bot_data using the robot name as the key and the robot object as the
value.

11. Create a loop which continues while moves still exist in the robot_moves deque. For every iteration,
pop the move from the front of the deque and call the process_move method on the bot accessed from
the bot_data. The process_move accepts a string which represents an action. This is found in the second
element of each move tuple from the robot_moves deque (move[1]).

The next three lines of code update the character maze with the new robot positions, prints the maze, and
pauses the program briefly based on the settings from the top of the script.

12. Finally, remove the call to rr.print_results(bot_scores) from earlier in the code and place it at the end
of the code to see the final results after the race!

13. In the terminal, type python3 robot_race.py in order to watch the robots race and see the final
results.

Solution

robot_race.py (download robot-race.tar.gz from GitHub Portfolio repository)

import robot_race_functions as rr
from collections import deque, Counter, namedtuple
from time import time, sleep

maze_file_name = 'maze_data_1.csv'
seconds_between_turns = 0.3
max_turns = 35

Initialize the robot race
maze_data = rr.read_maze(maze_file_name)
rr.print_maze(maze_data)
walls, goal, bots = rr.process_maze_init(maze_data)

Populate a deque of all robot commands for the provided maze

https://github.com/mikezolo/portfolio/raw/main/resources/portfolio-files/python-files/robot-race.tar.gz
https://github.com/mikezolo/portfolio

Python Projects

3

robot_moves = deque()
num_of_turns = 0
while not rr.is_race_over(bots) and num_of_turns < max_turns:
 # For every bot in the list of bots, if the bot has not reached the end, add a new move to
the robot_moves deque
 for bot in bots:
 if not bot.has_finished:
 # Call compute_robot_logic function and append the result to the robot_moves deque
 move = rr.compute_robot_logic(walls, goal, bot)
 robot_moves.append(move)

 num_of_turns += 1

Count the number of moves based on the robot names
move_counts = Counter(move[0] for move in robot_moves)

Count the number of collisions by robot name
collision_counts = Counter(move[0] for move in robot_moves if move[2])

Create a namedtuple to keep track of our robots' points
BotScoreData = namedtuple('BotScoreData', ['name', 'num_moves', 'num_collisions', 'score'])

Calculate the scores (moves + collisions) for each robot and append it to bot_scores
bot_scores = []
for bot in bots:
 score_data = BotScoreData(
 name=bot.name,
 num_moves=move_counts[bot.name],
 num_collisions=collision_counts[bot.name],
 score=move_counts[bot.name] + collision_counts[bot.name]
)
 bot_scores.append(score_data)

Populate a dict to keep track of the robot movements
bot_data = {bot.name: bot for bot in bots}

Move the robots and update the map based on the moves deque
while len(robot_moves) > 0:
 move = robot_moves.popleft()
 bot = bot_data[move[0]]
 bot.process_move(move[1])

 # Update the maze characters based on the robot positions and print it to the console
 rr.update_maze_characters(maze_data, bots)
 rr.print_maze(maze_data)
 sleep(seconds_between_turns - time() % seconds_between_turns)

Print out the results!
rr.print_results(bot_scores)

	Python Projects Solved by Michael Zolotarenko
	The Great Robot Race ✎ Specialized Collections
	Solution

